Job

A bus is traveling with 60 passengers. When it arrives at a stop, x number of passengers get off and 8 get on. At the next stop, one-third of the passengers on board get off and 5 get on. There are now 37 passengers on the bus. Find out the value of x?

Created: 7 months ago | Updated: 3 months ago
Updated: 3 months ago
Ans :

প্রশ্নে বলা হচ্ছে, একটা বাস 60 জন যাত্রী নিয়ে যাত্রা শুরু করে। যখন ১ম Stop-এ আসে তখন x জন যাত্রী নেমে যায় এবং ৪ জন্য যাত্রী উঠে। ২য় Stop-এ এসে 13  অংশ নেমে যায় এবং 5 জন যাত্রী উঠে। যদি বর্তমানে 37 জন যাত্রী থাকে তাহলে ১ম Stop-এ কতজন যাত্রী নেমেছিল তা বের করতে হবে। 

As in the second stop 13  passenger get off from the bus. So total passenger left 23 in the bus. 

According to question, 

(60 - x + 8) × 23 + 5 = 37  

 (60 - x + 8) × 23 = 37  - 5 

 (68 - x) × 23= 32

 (68 - x) = 32 × 23

⇒ 68 - x = 48 

⇒ - x = 48 - 68 

⇒ - x = - 20 

x = 20 

ans: 20.

7 months ago

গণিত

.

Content added By
Content updated By

Related Question

View More

ক ৯ দিনে করে ১টি কাজ 

ক ১ দিনে করে ১/৯ অংশ 

আবার,

খ ১৮ দিনে করে করে ১টি কাজ 

খ ১ দিনে করে ১/১৮ অংশ

ক + খ একত্রে করে ( ১/৯ + ১/১৮) = ১/৬ 

খ ১ দিনে করে ১/১৮ অংশ 

খ ৬ দিনে করে ( ৬*১/ ১৮) = ১/৩ অংশ 

কাজ বাকি  ( ১- ১/৩) = ২/৩ অংশ 

ক+খ ১/৬ অংশ করে ১ দিনে 

ক+খ ২/৩ অংশ করে ( ৬*২/৩) = ৪ দিনে 

অতএব মোট সময় ( ৬+৪) = ১০ দিন ( উত্তর )  

ইংরেজিতে ফেল করেছে    (১০০- ৭০)%  =  ৩০% 

বাংলায় ফেল করেছে       (১০০- ৮০)%   = ২০% 

শুধু ইংরেজিতে ফেল করেছে = (৩০ - ১০)% = ২০% 

শুধু বাংলায় ফেল করেছে    = (২০ - ১০)% = ১০% 

উভয় বিষয়ে পাস করেছে     = ১০০% - (২০% + ১০% + ১০%) = ৬০% 

  প্রশ্নমতে, 

         শিক্ষার্থী সংখ্যা         ৬০%  = ৩৬০ জন

        শিক্ষার্থী সংখ্যা          ১%    = ৩৬০/৬০  জন

  ∴    শিক্ষার্থী সংখ্যা     ১০০%    = ৩৬০/৬০ ×১০০ জন

                                               = ৬০০০ জন। 

দেয়া আছে, 

দিন বাকি থাকে... (৮০-২০)=৬০ দিন

কাজ বাকি থাকে…(পূর্ন অংশ বা ১অংশ - ১/৫ অংশ)=৪/৫ অংশ

প্রশ্ন মতে,

          ২০ দিনে ১/৫ আংশ কাজ করে ৬০জন লোকে 

           ১   “       ১/৫  “            ” ৬০*২০ “ ”

           ১   “         ১   “            ” ৬০*২০*৫ “  ”

           ৬০  “      ৪/৫   ”        “   ৬০*২০*৫*৪/৬০*৫  ”  " 

                                                 = ৮০ জন

     অতিরিক্ত লোক লাগবে  (৮০-৬০)= ২০ জন (উওর)     

নৌকা যেতে পারে ৮ কিমি অনুকূলে এবং ৫ কিমি প্রতিকূলে, তাহলে নৌকার বেগ অনুকূলে (Vr) এবং প্রতিকূলে (Vc) প্রতিটি স্রোতের বেগের সাথে যোগ হতে হবে।

স্রোতের বেগ হলো (Vs)। প্রথমে নৌকার অনুকূলে বেগ বের করা যাক:

Vr = Vs + 1 (সংখ্যা 1 নৌকার বেগ এবং স্রোতের অনুকূল বেগের মধ্যে পার্থক্য)

প্রতিকূলে নৌকার বেগ বের করা যাক:

Vc = Vs - 1 (সংখ্যা 1 নৌকার বেগ এবং স্রোতের প্রতিকূল বেগের মধ্যে পার্থক্য)

আমরা জানি যে যদি স্রোতের বেগ প্রতি ঘণ্টায় ১ কিমি অধিক হয় তবে নৌকা প্রতিকূলে দ্বিগুণ বেগে যেতে পারে, তাহলে আমরা নিম্নলিখিত সমীকরণ ব্যবহার করে এই সমস্যাটি সমাধান করতে পারি:

Vc = 2 * Vr

Vs - 1 = 2 * (Vs + 1)

Vs - 1 = 2Vs + 2

Vs - 2Vs = 2 + 1

-Vs = 3

Vs = -3

আমরা স্রোতের বেগ হলো -3 কিমি/ঘণ্টা (প্রতিকূল দিকে যাওয়ার কারণে সর্বনিম্ন মান নেগেটিভ)।

আমরা নৌকার অনুকূলে বেগ (Vr) বের করতে পারি:

Vr = Vs + 1 Vr = (-3) + 1 Vr = -2 কিমি/ঘণ্টা

তাহলে, নৌকা সম্পূর্ণ ৮ কিমি অনুকূলে যেতে পারে এবং স্রোতের বেগ হলো -3 কিমি/ঘণ্টা এবং নৌকার অনুকূলে বেগ হলো -2 কিমি/ঘণ্টা
 

Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...